PDE Midterm Exam: Sample Solutions
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1. Note that the T'ricomi equation is often written by either the form
Uyy — YUgg = 0

or 1
Upy — Zuyy =0.

Take the latter form of the equation, for example. It can be viewed as the multiply of two differential
operators as follows:
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Then from the above we may have the splitting of the equation:
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yielding a pair of the characteristic equations for the Trocomi equation. From there, it is easy to

see that the associated characteristic curves can be determined by

d 1
dy _ . 1

dx NGB
Hence, integrating the equation on the both sides, we find the result:
/:I:\/gjdy:/dac = i§y§+C’:x = 3ac:|:2y§:C,
where C' is an integration constant.
2. Given the d’Alembert form of the solution for the wave equation: u(z,t) = ¢(z + ct) + 1 (x — ct),

for some smooth functions ¢ and ¢, we may perform partial differentiation of v with respective to
t, and find

ur(z,t) = cd'(z + ct) — e’ (x — ct).

With that, by applying the initial conditions, we have

¢(z) + () = f(2), (1)
o' (z) — e’ (z) = g(). (2)

Now integrating (2) with respective to z, we have
oa) ~ vl = ¢ [ gl ds+C ®)



Then by the simple algebraic operation 1[(1) + (3)] and $[(1) — (3)], it is easy to get

oa) = 3@ + o [ o) ds+ S,

where C' is constant. Hence, we obtain the result:

u(z,t) = ¢z +ct) +P(x — ct)
z+ct

= %[f(x+ct)+f(x—ct)]+%/ g(s) ds.

xz—ct

3. (a) Assume that u(z,t) = X (z)T'(¢) is a solution. We then substitude it into the equation, after
simple algebraic manipulation, we have

T// _I_ 2kT/ B X// B
2T x

where r is a constant, yielding easily the decoupled system of equations:

X" —rX =0, 4)
T" 4+ 2kT' — rc*T = 0. (5)

Now, if r = p? > 0, then from (4), we find
X(z) = c1et® + coe™H°. (6)
In the other case, when r = 0, we have
X(z) = czx + cq. (7)
For nontrivial solution, from the boundary conditions:
u(0,t) = X(0)T(t) =0, wu(L,t)=X(L)T(t)=0,

we should have X (0) = X (L) = 0. Applying them to both (6) and (7), we will have

c1+ec=0 or ¢y =0
crett + e =0 c3L + ¢y = 0.

From them, it is easy to check that we will have ¢; = ¢2 = 0,¢3 = ¢4 = 0, and so trivial solutions

when r is non-negative. Having this in mind, we therefore take r = —p? < 0. After some work, we
find
Xy (x) = sin(u,z) = sin (n%x) , n=12---.

To find T}, (t), assuming that T,, = ¢™=¢, from (5), we find the characteristic equation

m3 + 2km, + 2p2 =0,



yielding the characteristic roots

n=—-kxt k> —2ul.

For different p,, = %, let

v = VI =),

We find that:
2
if k2> e (%) , = ¢~*[q,, cosh(Ant) + by sinh(Ant)],
if k‘z = C2 (n%) s = eikt(an + bnt);
if kK <c (nL7r) = e *[a,, cos(\,t) + b, sin(\,1)].

Note that k — (enw/L) > (<,=)0 implies n < (>,=)(kL)/(wc). By superposition principle , we
have formal solution of the problem as

u(z,t) = ZXn(T/)Tn(t)

> Sin(n%x) (@ cosh(Ant) + by, sinh(At)] +

kL
1<n<He

3 sin (%x) [an c0S(Ant) + by sin(Ant)] +

sin (%) (ass + b;;ﬁt)} , (8)

where the last term is added when % is an integer.
To determine a,, and b,,, we apply the initial condition at ¢ = 0. In the case when u(z,0) = f(z),
we have

ian sin (%x) = f(x), (9)

and so
2 L
z/o f(z)sin (n%x) dz, n=12---, (10)

according to the basic formular for the fourier-sine series expansion of f(x).
While in the other case when du/0t(x,0) = 0, we have

= nm k
—kap + Apby)sin (| — in [ — —kaxe +bic)| =0.
Z( an, + )sm(Lx)—l—[sm<ca:>( arL + ):rlc,):| 0

n=0
Thus we may compute b,, as follows:

b — { ka, if n = £L js a positive integer
n

11
kan /A, 0therw1se (11)



with a, determined by (10),n=1,2,---

(b) If k = 0, we have only the case k? — ¢*(2E)? < 0, and so n > & for all n. Since A, = ppc =
e # 0, from (11) we know that b,, = 0 for all n . Hence from (8) we arrive at

NE

u(z,t) = n Sin (%x) cos (Apt)

n Sin (Ex) CoS (?t)

L
ansm[ :v-l-ct}

3
Il
=

l\DIb—l

N | = S g
||M8 '&M

i sin [ (x — ct)]

this is clearly the d’Alembert form of the solution.

(¢) To show that the energy E(t) is a nonincreasing function with respective to time ¢, we compute
dE/dt as follows:

dE(t) 1 (td 2 2
. 5/0 Z1(w)” + (cuz)®)lde

L
/ (uguss + ugtyg) de
0

L L
= / Uity dx +/ Augyg do
0 0

L L
/ Uty AT + (c uxut) |0 —/ Cuptigy dw] ) (12)
0 0

Note that we have the homogeneous boundary conditions: u(0,¢) = u(L,t) = 0, and so u(0,t) =
ug(L,t) = 0. Thus, together with the damped wave equation, the above expression can be written
as

E L
d—(t) = / Ut (utt - c2um) dx

L
—/ 2k (u;)? dx < 0,
0

for any positive constant k.

To show the uniqueness of the solution, we assume that there are two different solutions: u; (z,t)
and us(z,t), for the problem. Now let w(z,t) = ui(z,t) — ua(z,t). Since the equation is linear,
it is easy to see that w(z,t) satisfies the original damped wave equation, but with zero initial and
boundary conditions. Thus from the definition of the energy E(t) and dE/dt < 0, clearly we have
E(t) > 0 and E(t) < E(0) = 0. This leads easily to the conclusion: E(t) = 0 for all time ¢. Because
of this, we conclude that w, = 0 and w; = 0, and so w(z,t) = C (a constant). But from the zero
initial and boundary conditions, we find that C = 0, and so w(z,t) = 0 which is the uniqueness of
the solution uq = us.



(d) To see that our formal solution (8) converges uniformly under the assumed conditions, for
0 <t <T,it is sufficient to look at the convergence behavior of the series:

_kt . nmw .
e n>ZkL sin ( T x) [ar, cos (Apt) + by sin (Apt)]. (13)

To do so, we begin by using the triangle inequality, the boundness of the trigonometric function
to one, and e~** < 1 for 0 < ¢t < T to the coefficient in (13), and obtain

—kt - nmw .
e "sin ( T x) [a,, cos (Ant) + by, sin (/\nt)]‘

IN

an sin (%x) cos (Ant) ‘ +

by, sin (nL—Wx) sin (A1) ‘

IN

lan| + |by]

k
= Jan| + /\—|an| (from (11))

(1 + %) |G-
k

lim — = lim ——— =,
n—oo n n—oo |k2 _ 02n27r2|
L2

Note that since

for convergence of the series (13), it amounts to examining the convergence of the series D _ rz |a,|.
Recall that from (9) and (10), we have

Gy = %/OL f(z)sin (n%a:) dz,

where f(z) is defined to be an odd function on [—L, L]. Thus the derivative of f(z) is an even
function on [—L, L], and has a fourier-cosine series representation of the form:

fl(x) = A+ iA" cos (%az) ,

n=1

where




Since f'(x) is square integrable for any NV, from the Bessel’s inequality, we have
N L

2 1 ! 2
Sy [ @ de<ec,

n=1 -L

and so from the above relation between A, and a, we obtain
N 2 L
L\~ 2
S (nan)? < (—) 2 [ r@r <.
ot w) L Jg
Now we use the Cauchy-Schwarz inequality, yielding
N 2 N N
2
n=1 n=1 n=1
and so
k
Z <1-|- E) lan| < oo.
n>%

When taking n — 0o, we may use the Weierstrass M-test to show the uniform convergence of the
above series, and so establish the fact that the formal solution (8) is a uniformly convergent one.

4.(a) Define the function w(z,t) = Maz + A(t), and let v(z,t) = u(z,t) — w(z,t), where u is
the solution of the problem. Then we will have the reformulated problem as

ov 8%v y
5 o +q(x,t)
v(2,0) = f(z) (14)

v(0,t) =0, wo(L,t)=0,

where ¢(z,t) = Mw + A'(t) and f(x) = wx — A'(0).

(b) To solve the reformulated problem as described in (a), we consider the expansion of v, ¢, and
f in the forms:

v(z,t) = i B, (t) sin (—x) , (15)
q(z,t) = i qp Sin (n_ww) , (16)
f(z) = i fnsin (%az) (17)



Denote K (t) = (B'(t) — A'(t))/L. The coefficients ¢, and f, are determined by

gn(z) = %/OLq(a: t)sm(nL )da:

= / [K (t)z + A'(t)] sin ( )
9K () /

_ i[K(t) L(- 1)”+1+A’()( (=)™,

fn = / f(z)sin —x)dz

_ z/0 (~K(0)z - A'(0))sin (2 do
= ZIKOLE) 4 A0 - (-]

(ac cos + %Al(t)[l - (=1)"]

Substitude (15) and (16) into (14), after some simple algebraic manipulations, we then have the
relation

5 [0 .0 (5 - o] sin () =0

and so

dB,(t)

AnBn(t) — gn(t) =
15+ eAaBalt) — 4ult) = 0

forn=1,2,---; A\, = (nm/L)%. It is easy to see that the solution of the above ODE takes the form

B, (t) = e Mt [Bn(O) + /0 t qn(s)er® ds} ,

where B,,(0) = f,; a result obtained from the initial condition. Thus we have the formal solution
for (14) as written by

i (0sin (")

and so u = v + w for the original problem.

(¢) Cousider the initial-boundary value problem for the heat equation:
ou_ o
ot Ox?’
u(z,0) = f(z), 0<z<L,

U(O,t) = gl(t)a U(L,t) = gZ(t)a t>0.

O<z<L, t>0
(18)

The “Maximum Principle” for the problem (18) states as:



If u(z,t) satisfies (18) and there are two numbers M and m such that
m < f(x) <M, m<gi(t) <M, m<gy(t) <M.
Then the solution will satisfy
m < u(x,t) < M.

Now if there are two solutions us (z,t) and ua(z,t) for (18), then it is easy to show that w(z,t) =
u1(w,t) —u2(x,t) is a solution of the same equation with zero boundary value and zero initial value.
Clearly, by the maximum principle, we can choose M = 0 and m = 0 for w(z,t). Then we have

0 <wi(z,t) —us(z,t) <0,

and hence u; (z,t) = uz(z,t); the uniqueness of the result.



